
Proc. of the 6th R.O.C. Symp. on R&M (2005) 
 

 1

Optimal Selection of the Most Reliable Design with a Reciprocal 
Weibull Degradation Rate 

Hong-Fwu Yu 
Department of Industrial Management, National Formosa University, 

yuhf@sunws.nfu.edu.tw. 

Abstract 
In industries, the manufacturer is usually confronted with the problem of selecting the most design 

among several competing designs for some parts (or components) of his/her product at the research and 
development stage. Such a selection work is no doubt a great challenge for highly reliable products, since 
there are few (or even no) failures can be obtained by using traditional life tests or accelerated life tests. In 
such a case, degradation tests can be employed to assess the product's reliability information if there exists 
product characteristics whose degradation over time can be related to reliability. Several factors (e.g., the 
inspection frequency, the sample size and the termination time) are influential to the experimental cost and the 
selection precision of such selection degradation tests. In this paper, we deal with the optimal design problem 
of selecting the most reliable design with a reciprocal Weibull degradation rate. First, an intuitively appealing 
selection rule is proposed. Next, under the constraints of a minimum probability of correct selection and a 
maximum probability of incorrect selection of the proposed selection rule, the optimum test plan (including 
the inspection frequency, sample size, and termination time for each competing design) are obtained by 
minimizing the total experimental cost.  

Key Words: The most reliable design; Highly reliable products; Inspection frequency; Termination time; 
Degradation rate; Reciprocal Weibull distribution. 
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1. Introduction 
In industries, the manufacturer usually face the 

problem of selecting the most reliable design among 
a variety of competing designs for some parts (or 
components) of his/her product at the research and 
development stage. Two techniques are required to 
achieve such a problem. One is the technique of 
reliability assessment. The other is a suitable 
identification rule to select the best design. For the 
latter, based on complete data, type-II censored data, 
and randomly censored data, there are several 
studies (e.g., [5]-[8], [14], [16], [20]) having 
contributed to this topic. Gupta and Panchapakesan 
(1988) gave a comprehensive survey of selection 
procedures in reliability models for complete and/or 
censored data. For highly-reliable products, Chang, 
Huang, and Tseng (1992), Tseng, Huang, and Wu 
(1994), and Tseng (1994) addressed the selection 
problems under accelerated life tests. 

However, for many highly reliable products, it 
is difficult to assess the reliability of these products 
using traditional life tests or even using the 
technique of censoring and/or accelerating the life 
by testing at higher levels of stress such as elevated 
temperatures or voltages, because few or even no 
failures can be obtained in a reasonable amount of 
time. In such cases, if there exists product 
characteristics whose degradation over time can be 
related to reliability, then collecting “degradation 
data” can provide information about product 
reliability. Nelson (1990), Bagdonavicius & Nikulin 
(2002), and Meeker & Escobar (1998) surveyed the 
literature on the subject. Lu & Meeker (1993) 
provided a two-stage method which uses 
degradation data to estimate the failure time 
distribution. Tseng, Hamada, and Chiao (1995) used 
a degradation model to improve the fluorescent lamp 
reliability. 

Several factors (e.g., the sample size, the 
inspection frequency, and the termination time) are 
influential to the experimental cost and the 
estimation precision of a degradation test. Obviously, 
an inappropriate setting of these factors not only 
wastes the experimental resources, but also reduces 
the precision of data analysis. Hence, how to set the 
values of these factors appropriately is usually a 
concern for the experimenters. Tseng & Yu (1997) 
proposed an intuitively on-line real-time rule to 
determine an appropriate termination time for a 
degradation experiment. However, they do not 
address the problem of how to determine the values 
of all factors simultaneously. Yu & Tseng (1999) 
proposed a method to determine the sample size, the 
inspection frequency, and the termination time for a 
degradation experiment. Similarly, by using the 

criterion of minimizing the variance of the estimated 
100 thp  percentile of a product's lifetime 
distribution, Wu & Chang (2002) investigated the 
optimal combination of these decision variables for a 
degradation test with the nonlinear mixed-effect 
model proposed by Lu & Meeker (1993). 

As to the selection problem with degradation 
data, Yu (2002) proposed an approach to the optimal 
design of the selection problem for products with 
lognormal degradation rates. In fact, Weibull and 
lognormal distributions are much alike and they may 
fit the lifetime data at hand well in real applications. 
However, their predictions may lead to a significant 
difference. An incorrect choice between these two 
distributions may lead to serious bias. The main 
purpose of this paper is to deal with the optimal 
design for a selection problem where the degradation 
rates follow a reciprocal Weibull distribution. First, 
an intuitively appealing selection rule is proposed 
and, then, the optimal test plan is derived by using 
the criterion of minimizing the total experimental 
cost. More specifically, subject to a minimum 
probability of correct selection and a maximum 
probability of incorrect selection, the optimal 
combination of the sample size, inspection frequency, 
and the termination time for each of competing 
designs are derived such that the total experimental 
cost is minimal. 

The rest of this paper is organized as follows. 
Section 2 briefly describes the assumptions of a 
degradation model, the selection rule, and the 
corresponding optimization problem. Section 3 
presents the optimal plan. Section 4 applies the 
proposed method to a numerical example. Finally, 
we give a brief conclusion in Section 5. 

2. Assumptions of a Degradation 
Experiment 

This section is devoted to describing the 
assumptions of the degradation model, the selection 
rule, and the optimization problem. 

2.1 The Degradation Model 
    Let )0(/)()( LtLt =η  denote the 
standardized quality characteristic of a product at 
time t , where )(tL  is the quality characteristic of 
the product at time t . Assume that )(tη  degrades 
over time and levels off towards 0 after a period of 
time. In electronics, this is typical of degradation 
processes of many highly reliable products (e.g., 
LEDs, fluorescent lamps, etc.). Based on real 
applications, assume that )(tη  satisfies the 



Proc. of the 6th R.O.C. Symp. on R&M (2005) 
 

 3

following degradation model: 

αβηφ tt −=))(( , 0≥t    (1) 

where )(xφ  is a non-decreasing function of x , 
defined on (0, 1] (e.g., xx ln)( =φ , x/11− , 
etc.); α >0 is a fixed and known constant; β > 0 is 
a random variable and is usually called the 
degradation rate of the product. In practical 
applications, it isn't easy to determine such a 
function )(xφ . Yu (2003) gave some explanations 
about how to select such a function and how to 
evaluate the appropriateness for the tentatively 
selected functions. For example, Tseng et al. (1995) 
used xx ln)( =φ  with α =1 to describe the 
degradation path of fluorescent lamp. In addition, Yu 
& Tseng (1999) and Yu & Chiao (2000) used 

xx ln)( =φ  with α =0.5 to describe the 
degradation paths for LED products. 

Let D  denote the critical level for this 
degradation path. The product lifetime ( τ ) is 
suitably defined as the time when η  crosses the 
critical level D . Then, from Equation (1), τ  can 
be expressed as 

α

β
φτ

/1
)(
⎥
⎦

⎤
⎢
⎣

⎡−
=

D
    (2) 

In this paper, we assume that 1−β  follows a 
Weibull distribution with scale parameter θ  and 
shape parameter δ  (which is denoted by 

),(~1 δθβ Weibull− . Then βln−  follows the 
extreme value distribution with location parameter 
u  and scale parameter b , where θln=u  and 

δ/1=b  (which is denoted by 
),(~ln buExtremeβ− ). Then it is easily seen 

that  

⎟
⎠
⎞

⎜
⎝
⎛ −+

αα
φτ bDuExtreme ,))(ln(~ln  

Assumptions: 
Suppose that a degradation experiment for 

selection is conducted under the following 
conditions: 
1. The most reliable design would be selected among 

m  competing designs denoted by m
ii 1}{ =Π . 

2. For each design, n  devices are randomly 
selected for testing. 

3. Suppose that, for iΠ , the measurements are 

made every if  units of time (e.g., if  hours or 

if  days) until time uiili tlft
i

∗∗=, , where 

ut  is a unit of time and il  is the number of 
measurements. 

4. Due to the measurement errors, the actual 
degradation path cannot be observed directly. For 

iΠ , let )( ,kiij ty  denote the sample 

degradation path of thj  device at time kit , . It 
can be expressed as follows: 

( ) )()( ,,, kiijkiijkiij ttty i εβφ α +−=  

ilk ≤≤1 , nj ≤≤1 , mi ≤≤1 ,           (3) 

where )( ,kiij tε  is the error term and follows a 
normal distribution with mean 0 and variance the 

2
εσ  (which is denoted by ( )2,0 εσN ). 

Moreover, ijβ  and )( ,kiij tε  are independent 

for all ilk ≤≤1 , nj ≤≤1 , and mi ≤≤1 . 

5. Assume that m
ii 1}{ =α  may be different and that 

ijβ  follows a reciprocal Weibull distribution 

with the location parameter iθ  and the scale 

parameter δ . 
6. Let iτ  denote the product's lifetime for iΠ  

and st  denote a pre-specified time. Then, 
according to the assumptions stated above, the 
probability that a product in iΠ  will be 

survival beyond st  can be given by 

}Pr{),;( siisi tbutR ≥= τ  

⎟
⎠
⎞

⎜
⎝
⎛ −−∗−−

Ψ−=
b

Dtu sii ))(ln(]ln[1 φα     (4) 

where )(xΨ  is the cumulative distribution 
function (cdf) of the standard extreme value 
distribution. ∗Π i  is said to be the most reliable 

design if ),;( butR isi ∗∗ = ),;(max
1

butR isimi≤≤
. 

According to Equation (4), the equation above 
implies that ∗Π i  is the most reliable design if 

sii tu ln∗− ∗∗ α = }ln{max
1 siimi

tu ∗−
≤≤

α . 

Selection rule (SR): 
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Let m
iiu 1}ˆ{ =  be unbiased estimators of 

m
iiu 1}{ =  and let ),( ii uu  be the corresponding 

100( ζ−1 )% confidence interval (CI) of iu , 

mi ≤≤1 . Then, based on these estimators, we 
propose a selection rule as follows: 
(SR) ∗Π i  is identified to be the most reliable 

design if 

siisii tutu lnln ∗−≥∗− ∗∗ αα , mi ≤≤1 , ∗≠ ii  

 (5) 
 

2.2 The Optimization Problem 

    Define the thi −∗  preference region as 
follows:  

},1,lnln|),...,,({ 21
∗≠≤≤Δ+∗−≥∗−==Ω ∗∗∗ iimitutuuuuu siisiimi αα  

      (6) 

where Δ > 0 is a constant pre-specified by the 
decision maker. We say that Rule SR gives a correct 

decision (CD) for ∗Ω∈= imuuuu ),...,,( 21 , if 

∗Π i  is identified as the most reliable design. Let 

)SR|CD(Pr
u

 and )SR|ICD(Pr
u

 denote the 

probabilities that Rule SR gives a correct decision 

and an incorrect decision for u , respectively. To 
enhance the quality of our decision, it is usually 
required that the probability of CD exceeds a 
specified minimum value ∗P  (referred to as the 

∗P -condition) and the probability of ICD is less 
than a guarantee of maximum value ∗ξ  (referred 

to as the ∗ξ -condition); that is, 

∗

Ω∈
≥

∗

P
uu

i

)SR|CD(Prinf    (7) 

and 

∗

Ω∈

≤
∗

ξ)SR|ICD(Prsup
u

u
i

   (8) 

where ∗P  and ∗ξ  are pre-determined values 
given by the decision maker. Obviously, these two 
conditions will lead to several combinations of 
decision variables ( nlf m

iii ,)},{( 1= ), which are 
closely related to the experimental cost. Due to the 

limitation of experimental resources, the 
manufacturer usually wishes to control the 
experimental cost as low as possible. Thus, a 
trade-off is needed. Let TC( nlf m

iii ,)},{( 1= ) 
denote the total cost of conducting the degradation 
experiment. Then a typical decision problem can be 
formulated as follows: 

Minimize  TC( nlf m
iii ,)},{( 1= ) 

Subject to  
∗

Ω∈
≥

∗

P
uu

i

)SR|CD(Prinf  

∗

Ω∈

≤
∗

ξ)SR|ICD(Prsup
u

u
i

 

if , il , ∈n N={1, 2, 3,…} 
i =1, 2,…, m . 

3. The Optimal Plan 
The framework for solving the optimization 

model consists of three major steps stated in 
Sections 3.1-3.3. 

3.1 The Estimation of ( )bu m
ii ,}{ 1=  

    For nj ≤≤1  and mi ≤≤1 , based on the 

observations ( ){ } il
kkiijki tyt

1,, )(,
=

, the least-squares 

estimator (LSE) ijβ̂  of ijβ , conditional on ijβ , 
can be computed by minimizing 

[ ]∑
=

+=
i

i
l

k
kiijkiijij ttyLS

1

2
,, ))(()( αβφβ  

Thus, we obtain 

∑

∑

=

=−=
i

i

i
i

l

k
ki

l

k
kikiij

ij

t

tty

1

2
,

1
,, ))((

ˆ
α

αφ
β  

and 2
εσ  can be estimated by  

 ( )∑∑
= = −

=
m

i

n

j
ij

i
LS

lmn1 1

2 ˆ
)1(

1 βσ ε  

According to Yu & Tseng (2004), if ∑
=

i
i

l

k
kit

1

2
,
α is 

sufficiently large, then ijβ̂ln−  approximately 
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follows the following extreme value distribution: 

( ))()( ,~ˆln liliij buExtremeβ−     (9) 

Where 
)( )()( bbuu liili −∗+≈ γ  

2/1

1

2
,

2

22

2
)(

216

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +Γ

+=

∑
=

i
i

l

k
ki

i

li

t
bb

α

ε

π

δ
θσ

 

γ =0.5772... is known as Euler's constant, and 
)(xΓ  is the gamma function. Based on 

n
jij 1}ˆln{ =− β , Yu & Tseng (2004) estimated iu  

and b  by iû  and ib̂  and which satisfy the 
following simultaneous equations: 

i

i

b
n

j i

iju

b

x
n

e

ˆ

1

ˆ

ˆexp1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=
   

and 

∑
∑

∑

=

=

=
=−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

n

j
iji

n

j i

ij

n

j i

ij
ij

x
n

b

b

x

b

x
x

1

1

1
01ˆ

ˆexp

ˆexp

, 

where ijijx β̂ln−= , nj ≤≤1  and mi ≤≤1 . 

Note that iû  and ib̂  are the maximum likelihood 

estimators (MLEs) of )(liu  and )(lib  based on 
n
jij 1}ˆln{ =− β . 

3.2 The Sampling Distributions of 
( m

iiu 1}ˆ{ = , ib̂ ) 

According to Yu & Tseng (2004), if ∑
=

i
i

l

k
kit

1

2
,
α  

is sufficiently large, then the joint distribution of iû  

and ib̂  follows asymptotically the following 
bivariate normal distribution: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(

)(

)( ,~ˆ
ˆ

li
li

li

i

i

b
u

N
b
u

             (10) 

where 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−∗

−∗⎥
⎦

⎤
⎢
⎣

⎡
−+∗

=Σ

2

2
)(

2

2
)(

2

2
)(2

2

2

2
)(

)(
6

)1(
6

)1(
6

)1(
6

6

π
γ

π

γ
π

γπ
π

n

b

n

b
n

b

n

b

lili

lili

li

Furthermore, as ∑
=

i
i

l

k
kit

1

2
,
α  approaches to 

infinity, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
)(

)(

)( , li
li

li

b
u

N  will converge to 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
,

b
u

N i , where 

     

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−∗

−∗⎥
⎦

⎤
⎢
⎣

⎡
−+∗

=Σ

2

2

2

2

2

2
2

2

2

2

6)1(6

)1(6)1(
6

6

π
γ

π

γ
π

γπ
π

n
b

n
b

n
b

n
b

 
 Adopting Σ  as a benchmark, Yu (2004) used 

the relative error of )(liΣ  and Σ  defined by 

∞

∞

Σ

Σ−Σ
=

||||
|||| )(lii

rυ  as a measure to assess the 

size of the difference between ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

)(

)(

li

li

b
u

 and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
b
ui  

(and )(liΣ  and Σ ), and then to determine if 

∑
=

i
i

l

k
kit

1

2
,
α  is sufficiently large, where the ∞ -norm 

∞⋅ ||||  for an nm ×  matrix ][ ijaA =  is 
defined as follows (see Golub & Van Loan, 1989): 

∑
=≤≤

∞ =
m

j
ijni

aA
11

||max||||  

In this paper, we also set the following 
condition proposed by Yu (2004) to choose 

m
iii lf 1)},{( = : 

ρυ =i
r , mi ≤≤1  
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where ρ > 0 is a constant pre-specified by the 
decision maker. This condition leads to the following 
result: 
 
Proposition 1. 

ρ
π

δ
θσ

α

ε
2

1

2
,

2

22 216
b

t
i

i
l

k
ki

i

=
⎟
⎠
⎞

⎜
⎝
⎛ +Γ

∑
=

, mi ≤≤1   (11) 

 
Equation (11) implies that )(lib 's are 

approximately equal. For convenience, we set 

ρ+∗== 1)()( bbb lli , mi ≤≤1   (12) 

Then 

Var[ iû ]= 2
uσ = ⎥

⎦

⎤
⎢
⎣

⎡
−+∗ 2

2

2

2
)( )1(

6
6

γπ
πn

b l , 

mi ≤≤1 ,           (13) 
               

Var[ ib̂ ]=
2

2
)(6

πn

b l , mi ≤≤1 ,        (14) 

Cov[ iû , ib̂ ]= )1(
6

2

2
)( −∗ γ

πn

b l , mi ≤≤1 ,  

       (15) 
and 

             
)( )()( bbuu lili −∗+= γ , mi ≤≤1 . 

3.3 The Computation of ),( ii uu  

Due to mathematical and computational 
intractability, it is usually a problem for obtaining CI 
for the location parameter of an extreme value 
distribution (Lawless, 1982). A feasible way to do 
this is based on the following pivotal: 

i

ii
u

b
uu

Z
i ˆ

ˆ −
= , mi ≤≤1 . 

To prove 
iuZ ’s are pivotals, we need the following 

result (see Lawless, 1982): 

Lemma 1. Based on Equation (9), 
i

lii

b

uu
Z

i ˆ
ˆ )(

1
−

=  

and 
)(

2

ˆ

li

i

b
b

Z
i
=  are pivotals. 

Subsequently, according to Lemma 1 and 
Equation (12), the fact that 

iuZ is a pivotal can be 

easily shown by the following manipulations: 

i

ii

b
uu

ˆ
ˆ −

 

i

liliii

b
bbbbuu

ˆ
)()]([ˆ )()( −∗+−∗+−

=
γγ

i

l

b

b
Z

i ˆ
1

11)(

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−∗

+=
ρ

γ
 

=
i

i Z
Z

2
1

1
1

11 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−∗+

ρ
γ  

Although CIs for iu  can in principle be obtained 

from 
iuZ , a practical difficulty is that its 

distribution can be very complicated. Hence, it is 
impossible to obtain by analytical means exact 
percentage points for it (see Lawless, 1982). An 
alternative to dissolve this difficulty is to produce 
very close estimates of percentage points by Monte 
Carlo methods. This is because that 

i
Z1  and 

i
Z 2  

are pivotals (i.e., parameter-free), their distributions 
are the same irrespective of the values of )(liu  and 

)(lb . So, if we set )(liu =0 and )(lb =1, then 
i

Z1  

and 
i

Z 2 become  

i

i

b
u

Z
i ˆ

ˆ
1 =  and ibZ

i
ˆ

2 = . 

Also, the right-hand side of the last equation in the 

expression for 
i

ii

b
uu

ˆ
ˆ −

 above can be reduced as 

follows: 

ii

i

bb
u

ˆ
1

1
11ˆ

ˆ
∗⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−+

ρ
γ . 

Thus, a very good estimate of the distribution of 

iuZ can be obtained by generating many (e.g., 

20000) samples from the standard extreme value 
distribution, computing iû  and ib̂ , and obtaining 
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the values of ii bu ˆ/ˆ  and ib̂/1 . In this paper, we 

provide a table for 
iuZ for 4515 ≤≤ n  with 

percentage points (0.005, 0.025, 0.05, 0.95, 0.975, 
0.995). For each combination of n  and percentage 
point, 20000 samples are generated from the 
standard extreme value distribution by S-plus 
package. The results are listed in Table 1. 

For illustrative purposes, based on such 
simulation results, a two-sided CI for iu  can be 
obtained as follows. Suppose that we want a 
two-sided 100(1-ζ )% CI for iu  and suppose that, 
from Table 1, we find that 

ζωω −=≤≤ 1}Pr{ 21 iuZ , 

where ),(11 ζωω n=  and ),(22 ζωω n=  
denote the 100(1-ζ )% lower and upper confidence 

limits for 
iuZ  with sample size n , respectively. 

This gives the CI for iu  as follows: 

iii uuu ≤≤ ,                   (16) 

where iii buu ˆˆ 2ω−=  and iii buu ˆˆ 1ω−= . 

3.4 The Computation of )SR|CD(Prinf
uu

i∗
Ω∈

 

and 
)SR|ICD(Prsup

u
u

i∗
Ω∈  

According to Equations (5), (6), (12)-(15), and 
(16), we can obtain the following result:  
 
Proposition 2.  
   )SR|CD(Prinf

uu
i∗

Ω∈
 

∫
−

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +−+Δ
+∗ΦΦ=

1

0

1

1

21

1

21 1)(
)( dx

b
x

m

σ
ρωω

σ
σ  

and 
   )SR|ICD(Prsup

u
u

i∗
Ω∈

 

∫
−

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
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and )(xΦ  is the cdf of the standard normal 
distribution. 

3.5 The Characterization of 
TC( nlf m

iii ,)},{( 1= ) 

The total cost of experiment, 
TC( nlf m

iii ,)},{( 1= ), consists of three parts: 
1. The cost of conducting the experiment is 

∑
=≤≤

∗∗+∗∗
m

i
iipiimis lfClfC

11
}{max , where 

sC  denotes the operator's salary per unit of time 

and pC  denotes the unit cost of power bill and 
depreciation of the currency of testing equipment. 

2. The cost of measurement is ∑
=

∗∗
m

i
im lnC

1
, 

where mC  denotes the unit cost of 
measurement.  

3. The cost of tested devices is nmCd ∗∗ , where 

dC  denotes the unit cost of device. 
 
Thus, the total cost of experiment is 

TC( nlf m
iii ,)},{( 1= ) 

∑
=

≤≤
∗∗+∗∗=

m

i
iipiimis lfClfC

11
}{max  

∑
=

∗∗+
m

i
im lnC

1

+ nmCd ∗∗ . 

 
The optimization model: 

Synthesizing the results above, the optimization 
model can be expressed as follows: 
 
Minimize 

 +∗∗+∗∗ ∑
=

≤≤

m

i
iipiimis lfClfC

11
}{max  

  ∑
=

∗∗
m

i
im lnC

1
+ nmCd ∗∗  

Subject to  
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⎠
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if , il , ∈n N={1, 2, 3,…} 2≥n  
i =1, 2,…, m . 

 
Although the optimization model seems 

somewhat complicated, a close look at the 
constraints reveals that m

iii lf 1)},{( =  can be 

determined by Equations (11) and ∗n  can be 
determined by Equations (17) and (18) which are 
really functions of n . 

In the next section, we will use an example to 
illustrate this procedure. 

4. A Numerical Example 
Suppose that a manufacturer wants to select the 

most reliable design at a predetermined time 

st =20000 hours among four competing designs of 

parts (denoted by 4
1}{ =Π ii ) whose quality 

characteristics satisfy Equation (3) with 
xx ln)( =φ  and  ),(~1 δθβ iij Weibull−  (i.e., 

),(~ln buExtreme iijβ− ). If the manufacturer 
would like to conduct degradation experiments to 
select the optimal design and would like to control 
the quality of decision such that the probability of 
correct selection achieves 0.90, then the following 
questions may come to him: 
1. How many devices ( n ) should be taken for each 

design? 
2. How to determine an appropriate inspection 

frequency ( if ) for iΠ ? 

3. How many times ( il ) should the measurements 

be made for iΠ ? (In other words, what is the 

most appropriate termination time (
ilit , ) for 

iΠ ?) 

To answer these questions, he needs the values 
of 4

1}{ =iiu , b , and 2
εσ . So a pilot study is 

conducted as follows. For each competing design, 

0n  devices are randomly selected for performing a 
degradation test under the condition that the 
measurements are made every 0f  units of time 

until time ul tlft ∗∗= 000
. 

Suppose, based on the data obtained from the 
pilot study and the procedures in Section 3, that 
( 1α , 2α , 3α , 4α ) =(0.5, 0.5, 0.5, 0.5) and 

( 1u , 2u , 3u , 4u , b , 2
εσ ) 

≅ (5.1980, 5.0438, 4.8075, 4.6923, 0.120, 0.0020). 

            (19) 

According to Equation (19), we can take 
Δ =5.1980-5.0438=0.1542. Besides, set ζ =0.10, 

ρ =0.01, ∗P =0.90, st =20000 hours, ut =24 
hours, and  

( sC , pC , mC , dC ) =(18.25, 10.85, 1.25, 60). 

Finally, if the lifetimes of these designs are 
technically defined as the time when their quality 
characteristics degrade below a critical level 
D =50%, then the optimal test plan can be obtained 
as follows: 

   ( ∗
1f , ∗

2f , ∗
3f , ∗

4f , ∗
1l , ∗

2l , ∗
3l , ∗

4l , ∗n ) 

  =(2, 2, 3, 3, 101, 87, 56, 49, 25). 

That is, there are 25 devices on test for each design. 
And, the inspection for 1Π , 2Π , 3Π , and 4Π  

will be taken up to ∗
1,1 lt =2*101*24=4848, 

∗
2,2 lt =2*87*24=4176, ∗

3,3 lt =3*56*24=4032, and 

∗
4,4 lt =3*49*24=3528 hours at 48, 48, 72, and 72 

hour intervals, respectively. 
The total cost is TC( ∗

=
∗∗ nlf m

iii ,)},{( 1 ) = 26340.1 
dollars. 

Thus, by using the selecting rule SR, we have at 
least 90% confidence in selecting the most reliable 
design correctly, if the true configuration of 
( 1u , 2u , 3u , 4u , b , 2

εσ ) is as shown above. 
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5. Conclusion 
This paper proposed an approach to the optimal 

design problem of selecting the most reliable design 
with a reciprocal Weibull degradation rate. First, an 
intuitively appealing selection rule is proposed. Then 
the optimal combination of the sample size, 
inspection frequency, and the termination time for 
each of competing products is derived by 
minimizing the total experimental cost, subject to 
the constraints of a minimum probability of correct 
selection and a maximum probability of incorrect 
selection of the proposed selection rule. 

For some very-highly-reliable products, the 
degradation may be so slow that it is impossible to 
have a precise estimation within a reasonable 
amount of testing time. In such cases, an alternative 
is to use higher stresses to extrapolate the products' 
reliability at a design stress. This is called an 
accelerated degradation test (ADT). Many excellent 
references can be found in Nelson (1990), 
Bagdonavicius & Nikulin (2002), and Meeker & 
Escobar (1993) on this subject. It is no doubt 
interesting to explore the selection problems with 
ADT data.  
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Table 1. Percentage points for 

iuZ  with 4515 ≤≤ n  

                            Percent  
n   0.005   0.025  0.05  0.95  0.975  0.995 
15 -0.8369349 -0.6132709 -0.5051136 0.4999568 0.6149584 0.8647800 
16 -0.8063064 -0.5696472 -0.4676821 0.4857601 0.5996278  0.8321308 
17 -0.7716773 -0.5652294 -0.4626510 0.4681919 0.5810484 0.7919772 
18 -0.7593111 -0.5446783 -0.4408019 0.4496273 0.5431534  0.7716725 
19 -0.7200131 -0.5221917 -0.4349377 0.4389673 0.5317767 0.7608980 
20 -0.6992567 -0.5124626 -0.4247361 0.4267159 0.5185241 0.7403819 
21 -0.6746095 -0.5000683 -0.4108292 0.4150886 0.5036729 0.6956545 
22 -0.6461502 -0.4746067 -0.3963549 0.3935923 0.4786128  0.6742980 
23 -0.6346446 -0.4685362 -0.3888307 0.3922332 0.4746973  0.6424078 
24  -0.6090699 -0.4470427 -0.3737693 0.3876159 0.4714896  0.6303872 
25 -0.5969210 -0.4403808 -0.3640087 0.3738185 0.4486703 0.6117672 
26 -0.5948354 -0.4333082 -0.3568962 0.3673695 0.4476189  0.6044995 
27 -0.5664993 -0.4242786 -0.3523856 0.3612035 0.4326448 0.5724763 
28  -0.5519401 -0.4117771 -0.3414448 0.3553037 0.4225960  0.5677018 
29  -0.5459925 -0.4059678 -0.3370607 0.3504840 0.4174685 0.5520698 
30 -0.5387873 -0.3969189 -0.3328127 0.3427461 0.4111536 0.5479877 
31 -0.5225392 -0.3913640 -0.3273462 0.3302183 0.3997060 0.5420760 
32 -0.5032165 -0.3816363 -0.3184235 0.3286855 0.3973704  0.5340919 
33 -0.5028472 -0.3750924 -0.3135198 0.3217955 0.3883973 0.5140329 
34  -0.4960804 -0.3708996 -0.3096764 0.3144957 0.3827077 0.5090763 
35 -0.4950426 -0.3677209 -0.3090020 0.3089990 0.3780428  0.5074862 
36 -0.4303312 -0.3624304 -0.3013255 0.3086409 0.3739596 0.5034182 
37 -0.4745468 -0.3538984 -0.2961882 0.3042587 0.3675779  0.4948321 
38 -0.4681570 -0.3509527 -0.2928190 0.2991383 0.3574701  0.4882042 
39 -0.4619455 -0.3448189 -0.2870099 0.2909621 0.3519658  0.4831272 
40 -0.4470719 -0.3378060 -0.2829040 0.2855017 0.3439096 0.4807485 
41 -0.4462656 -0.3317441 -0.2786154 0.2827952 0.3383323  0.4641474 
42 -0.4371849 -0.3287158 -0.2760627 0.2788424 0.3339745 0.4473633 
43 -0.4296181 -0.3228238 -0.2670903 0.2763385 0.3303542 0.4457682 
44 -0.4255031 -0.3191413 -0.2669574 0.2738197 0.3293325  0.4425773 
45 -0.4164150  -0.3158671 -0.2653876 0.2702089 0.3257615 0.4380333 

 


