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Abstract

In industries, the manufacturer is usually confronted with the problem of selecting the most design
among several competing designs for some parts (or components) of his/her product at the research and
development stage. Such a selection work is no doubt a great challenge for highly reliable products, since
there are few (or even no) failures can be obtained by using traditional life tests or accelerated life tests. In
such a case, degradation tests can be employed to assess the product's reliability information if there exists
product characteristics whose degradation over time can be related to reliability. Several factors (e.g., the
inspection frequency, the sample size and the termination time) are influential to the experimental cost and the
selection precision of such selection degradation tests. In this paper, we deal with the optimal design problem
of selecting the most reliable design with a reciprocal Weibull degradation rate. First, an intuitively appealing
selection rule is proposed. Next, under the constraints of a minimum probability of correct selection and a
maximum probability of incorrect selection of the proposed selection rule, the optimum test plan (including
the inspection frequency, sample size, and termination time for each competing design) are obtained by
minimizing the total experimental cost.

Key Words: The most reliable design; Highly reliable products; Inspection frequency; Termination time;
Degradation rate; Reciprocal Weibull distribution.
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1. Introduction

In industries, the manufacturer usually face the
problem of selecting the most reliable design among
a variety of competing designs for some parts (or
components) of his/her product at the research and
development stage. Two techniques are required to
achieve such a problem. One is the technique of
reliability assessment. The other is a suitable
identification rule to select the best design. For the
latter, based on complete data, type-Il censored data,
and randomly censored data, there are several
studies (e.g., [5]-[8], [14], [16], [20]) having
contributed to this topic. Gupta and Panchapakesan
(1988) gave a comprehensive survey of selection
procedures in reliability models for complete and/or
censored data. For highly-reliable products, Chang,
Huang, and Tseng (1992), Tseng, Huang, and Wu
(1994), and Tseng (1994) addressed the selection
problems under accelerated life tests.

However, for many highly reliable products, it
is difficult to assess the reliability of these products
using traditional life tests or even using the
technique of censoring and/or accelerating the life
by testing at higher levels of stress such as elevated
temperatures or voltages, because few or even no
failures can be obtained in a reasonable amount of
time. In such cases, if there exists product
characteristics whose degradation over time can be
related to reliability, then collecting “degradation
data” can provide information about product
reliability. Nelson (1990), Bagdonavicius & Nikulin
(2002), and Meeker & Escobar (1998) surveyed the
literature on the subject. Lu & Meeker (1993)
provided a two-stage method which uses
degradation data to estimate the failure time
distribution. Tseng, Hamada, and Chiao (1995) used
a degradation model to improve the fluorescent lamp
reliability.

Several factors (e.g., the sample size, the
inspection frequency, and the termination time) are
influential to the experimental cost and the
estimation precision of a degradation test. Obviously,
an inappropriate setting of these factors not only
wastes the experimental resources, but also reduces
the precision of data analysis. Hence, how to set the
values of these factors appropriately is usually a
concern for the experimenters. Tseng & Yu (1997)
proposed an intuitively on-line real-time rule to
determine an appropriate termination time for a
degradation experiment. However, they do not
address the problem of how to determine the values
of all factors simultaneously. Yu & Tseng (1999)
proposed a method to determine the sample size, the
inspection frequency, and the termination time for a
degradation experiment. Similarly, by using the

criterion of minimizing the variance of the estimated

100 pth percentile of a product's lifetime

distribution, Wu & Chang (2002) investigated the
optimal combination of these decision variables for a
degradation test with the nonlinear mixed-effect
model proposed by Lu & Meeker (1993).

As to the selection problem with degradation
data, Yu (2002) proposed an approach to the optimal
design of the selection problem for products with
lognormal degradation rates. In fact, Weibull and
lognormal distributions are much alike and they may
fit the lifetime data at hand well in real applications.
However, their predictions may lead to a significant
difference. An incorrect choice between these two
distributions may lead to serious bias. The main
purpose of this paper is to deal with the optimal
design for a selection problem where the degradation
rates follow a reciprocal Weibull distribution. First,
an intuitively appealing selection rule is proposed
and, then, the optimal test plan is derived by using
the criterion of minimizing the total experimental
cost. More specifically, subject to a minimum
probability of correct selection and a maximum
probability of incorrect selection, the optimal
combination of the sample size, inspection frequency,
and the termination time for each of competing
designs are derived such that the total experimental
cost is minimal.

The rest of this paper is organized as follows.
Section 2 briefly describes the assumptions of a
degradation model, the selection rule, and the
corresponding optimization problem. Section 3
presents the optimal plan. Section 4 applies the
proposed method to a numerical example. Finally,
we give a brief conclusion in Section 5.

2. Assumptions of a Degradation
Experiment
This section is devoted to describing the

assumptions of the degradation model, the selection
rule, and the optimization problem.

2.1 The Degradation Model

Let n(t)=L(t)/L(0) denote  the
standardized quality characteristic of a product at
time t,where L(t) is the quality characteristic of

the product at time t . Assume that 77(t) degrades
over time and levels off towards O after a period of
time. In electronics, this is typical of degradation
processes of many highly reliable products (e.g.,
LEDs, fluorescent lamps, etc.). Based on real
applications, assume that 77(t) satisfies the



following degradation model:

¢(n) =-A%, 120 @

where @(X) is a non-decreasing function of X,
defined on (0, 1] (e.g, #(X)=Inx, 1-1/x,
etc.); a >0 is a fixed and known constant; >0 is

a random variable and is usually called the
degradation rate of the product. In practical
applications, it isn't easy to determine such a

function @(X) . Yu (2003) gave some explanations

about how to select such a function and how to
evaluate the appropriateness for the tentatively
selected functions. For example, Tseng et al. (1995)

used @(X)=InX with a =1 to describe the

degradation path of fluorescent lamp. In addition, Yu
& Tseng (1999) and Yu & Chiao (2000) used

#(x)=Inx with a =05 to describe the
degradation paths for LED products.

Let D denote the critical level for this
degradation path. The product lifetime (7 ) is
suitably defined as the time when 77 crosses the

critical level D. Then, from Equation (1), = can
be expressed as

e
I

In this paper, we assume that ﬂ_l follows a

Weibull distribution with scale parameter € and
shape parameter O (which is denoted by

Bt ~Weibull(8,5). Then —In S follows the
extreme value distribution with location parameter
U and scale parameter b, where u=Iné@ and
b=1/6 (which is denoted by
—In B ~ Extreme(u,b) ). Then it is easily seen
that

Inz ~ Extreme[m , Ej

a a

Assumptions:

Suppose that a degradation experiment for
selection is conducted under the following
conditions:

1. The most reliable design would be selected among

M competing designs denoted by {IT,}",.

2.For each design, N devices are randomly
selected for testing.
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3.Suppose that, for II;, the measurements are

made every f, units of time (e.g., f; hours or

f; days) until time t;, = f; *I; *t,, where
t, is a unit of time and |; is the number of
measurements.

4. Due to the measurement errors, the actual

degradation path cannot be observed directly. For
IT; , let Y;(tjx) denote the sample
degradation path of jth device at time t; . It
can be expressed as follows:
¢(Yij (tix )): —Bitiy + & (L)
1<k<ly 1<j<n, 1<i<m, (3)
where & (tj ) s the error term and follows a
normal distribution with mean 0 and variance the
82 (which is denoted by N (O, ng) ).
Moreover, S and &;(ti,) are independent

forall 1<k <l,, 1<j<n,and 1<i<m.

o

5. Assume that {o;}"; may be different and that
ﬂij follows a reciprocal Weibull distribution

with the location parameter &; and the scale

parameter o .
6. Let 7; denote the products lifetime for II;

and tg denote a pre-specified time. Then,
according to the assumptions stated above, the
probability that a product in II; will be

survival beyond tg can be given by

R; (ts Ui b) = Pr{Ti Zts}

:l_\y(_[ui _ai*lntg]_ln(_ﬁﬁ(D))) (4)

where W(X) is the cumulative distribution
function (cdf) of the standard extreme value
distribution. Hi* is said to be the most reliable

design if Ri* (ts;ui* ,b) :{nqgﬁ R; (ts;u;,b).

According to Equation (4), the equation above
implies that Hi* is the most reliable design if

U. —a. *Intg=max{u; —a; *Int}.
1<i<m

Selection rule (SR):
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Let {0;}"; be unbiased estimators of
{U; 3, and let (gi,ai) be the corresponding
100(1-¢ )% confidence interval (CI) of U;,

1<i<m. Then, based on these estimators, we
propose a selection rule as follows:

(SR) Hi* is identified to be the most reliable
design if
Up —a,. *Intg 2 U —a; *Intg, 1<i<m, i=i’

)

2.2 The Optimization Problem
Define the i° —th preference region as
follows:
Q. ={U= Uy, Uy Up) U — @y %Nt 2U; — o Ity + AL<T <m,i %0}
(6)

where A> 0 is a constant pre-specified by the
decision maker. We say that Rule SR gives a correct

decision (CD) for U= (Uy,U,,...,U) €Q.., if
Hi* is identified as the most reliable design. Let

Pra(CD|SR) and Prﬁ (ICD|SR) denote the

probabilities that Rule SR gives a correct decision

and an incorrect decision for U, respectively. To
enhance the quality of our decision, it is usually
required that the probability of CD exceeds a

specified minimum value P* (referred to as the
P*—condition) and the probability of ICD is less
than a guarantee of maximum value & * (referred

toasthe & -condition); that is,

inf Pr-(CD|SR) > P 7
ueQi* u

and
sup Pr-(ICD|SR) <ET (8)
ueQ .,

where P* and &* are pre-determined values

given by the decision maker. Obviously, these two
conditions will lead to several combinations of

decision variables ({(f;,l;)}";,n ), which are
closely related to the experimental cost. Due to the

limitation of experimental resources, the
manufacturer usually wishes to control the
experimental cost as low as possible. Thus, a

trade-off is needed. Let TC({(f;,l;)}"y,n)

denote the total cost of conducting the degradation
experiment. Then a typical decision problem can be
formulated as follows:

Minimize  TC({(f;,1.)}",,n)

Subiject to
inf Pr-(CD|SR)>P~*
ueQi* u
sup Pr-(ICD|SR) < ¢&F
aeQi* u
fi y II , Ne N:{l, 2, 3,}
i=1,2,..., m.

3. The Optimal Plan

The framework for solving the optimization
model consists of three major steps stated in
Sections 3.1-3.3.

3.1 The Estimation of ({ui}{“zl, b)

For 1<j<n and 1<i<m, based on the

observations {(ti,kvyij (tivk))}:izl’ the least-squares

estimator (LSE) ,éij of fjj, conditional on S,
can be computed by minimizing

li
LS(B) = kzl[¢(yij i)+ ﬁijtﬂ ]2
Thus, we obtain

I
z¢(yij (ti,k))tio,[li
k=1

ﬁij == I
>t
k=1

2

and o,

can be estimated by
1 -
— '-5( i )
n(l; -1

Zai

I
According to Yu & Tseng (2004), if Dt 7 is
k=1

sufficiently large, then —In,éij approximately



follows the following extreme value distribution:
Where
Uigy ®U; + 7 * (by —b)

1/2
Gaf,efr(u 2)
5

2
bigy =| 0% + ;
EZth‘k"‘

k=1

y =0.5772... is known as Euler's constant, and
I'(x) is the
—In;}"_,, Yu & Tseng (2004) estimated U,

ijfij=1 [

gamma function. Based on

A

and b by U; and b; and which satisfy the
following simultaneous equations:

and
n Xij
D Xij eXp| =
j= bi ) ~ 13
—b == x; =0,
n xij nija
D expl =
I= [
where X :—Inﬁij, 1<j<n and 1<i<m.

~

Note that U; and b,

; are the maximum likelihood

estimators (MLEs) of Uj,y and b;,, based on
{-In ﬂij}?:l'

3.2 The Sampling Distributions of
({3 by)

I
According to Yu & Tseng (2004), if Ztizlf‘
k=1

is sufficiently large, then the joint distribution of lji

and bi follows asymptotically the following
bivariate normal distribution:
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q‘ SN GRS (10)
bi bi(l) o

where
6b? 6b2
0 {’Ha—nz} —*(r-D)
S = nz 6 nz
! 2 2
6b7, 1) 6b7,
2 2
nzx nx

l;
Furthermore, as Ztizfi approaches  to
k=1

u.
infinity, N{(bl(l)}zi“’j will converge to
i(l)

ui
N([bJ,Z , Where
6b2 [ 72 6b?
- +(1—7)2} ~*(y 1)
2: nx L 6 T
2 2
&7, (1) L
nrz nz

Adopting X as a benchmark, Yu (2004) used
the relative error of Xy and X defined by

i 1Zigy = Z 1l
' 121l

. . Uiay U;
size of the difference between and
bigy b

(@and Xy and X)), and then to determine if

as a measure to assess the

I
Ztizfi is sufficiently large, where the oo-norm
k=1

|-l for an mxn matrix A=[a;] is
defined as follows (see Golub & Van Loan, 1989):

m
All . =max a:
I All= max | |

In this paper, we also set the following
condition proposed by Yu (2004) to choose

{0 1%L

vy =p, 1<i<m
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where p > 0 is a constant pre-specified by the

decision maker. This condition leads to the following
result:

Proposition 1.

eagefr[u Zj
—5

e tha,

Equation (11) implies that bi(|) 's are
approximately equal. For convenience, we set

bi(l)zb(|)=b*\/m, 1<i<m (12)
Then

Var[ U; = 02‘6b<" { (1—7)2]
<m, (13)
,1<i<m, (14)

. _6b] :
Cov[ i, bj]=—Ws(y -, I<i<m,
Nz
(15)
and

Uigy =U; +7 % (bgy —b), 1<i<m.

3.3 The Computation of (u, ,Gi)

Due to mathematical and computational
intractability, it is usually a problem for obtaining ClI
for the location parameter of an extreme value
distribution (Lawless, 1982). A feasible way to do
this is based on the following pivotal:

L 1<i<m.

To prove Zui ’s are pivotals, we need the following
result (see Lawless, 1982):

Lemma 1. Based on Equation (9), z, = Ui ~ Uiy

O

and Z, :bb_i are pivotals.
i

s L ER (R 94 4F)

Subsequently, according to Lemma 1 and
Equation (12), the fact that Zui is a pivotal can be

easily shown by the following manipulations:
4, —u;
b.

U —[u; +y * (0, —b)]+ 7 * (b, —b)

b
b(,)y*(l
=7 +

i)

1 1

Ny re

can in principle be obtained

:Z]'i +7/* 1_

Although Cls for U;

from Zui , a practical difficulty is that its

distribution can be very complicated. Hence, it is
impossible to obtain by analytical means exact
percentage points for it (see Lawless, 1982). An
alternative to dissolve this difficulty is to produce
very close estimates of percentage points by Monte

Carlo methods. This is because that Z, and Z,
are pivotals (i.e., parameter-free), their distributions
are the same irrespective of the values of Uiy and
b(l) . SO, if we set U|(|) =0 and b(|):1, then Zli

and Z, become

Also, the right-hand side of the last equation in the

. u
expression for —— above can be reduced as

follows:

1 1
4 *——.
b; Vi+p ) Db
Thus, a very good estimate of the distribution of
Zui can be obtained by generating many (e.g.,
20000) samples from the standard extreme value

distribution, computing l]i and bi, and obtaining



the values of U; /6i and 1/6i. In this paper, we
provide a table for Z, for 15<n<45 with

percentage points (0.005, 0.025, 0.05, 0.95, 0.975,
0.995). For each combination of N and percentage
point, 20000 samples are generated from the
standard extreme value distribution by S-plus
package. The results are listed in Table 1.

For illustrative purposes, based on such

simulation results, a two-sided CI for U; can be
obtained as follows. Suppose that we want a
two-sided 100(1- £ )% CI for U; and suppose that,
from Table 1, we find that

Prlo, <Z, <w,}=1-¢,

where and

w0, =w,(N,G) W, =, (N, Q)
denote the 100(1- ¢ )% lower and upper confidence
limits for Zui with sample size N, respectively.

This gives the Cl for U; as follows:

u; <u; <uj, (16)

A

where U; =U; —@,b; and Ui =U; —oyby;.

3.4 The Computation of Jfng Pr-(CD|SR)

sup Pra(ICD|SR)
u

EQi*

and

According to Equations (5), (6), (12)-(15), and
(16), we can obtain the following result:

Proposition 2.
inf Pra (CD|SR)

ueQ
1

oz o]
0 0'1

Oy
and
sup Pr-(ICD|SR)
aeQi* !

1 f{q{qﬂ(x) £ O At (@ m )byl p}}m_ldx
0 o o.

2 2

where

2
Glz

2
2

2
L+ (1-p)? + 0! +20,01-7)
Nz 6
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6b2 2
o2 =— 0w Tt 1= )% + 0F +20,(1-)
nrz 6

and ®(X) is the cdf of the standard normal
distribution.

3.5 The Characterization of
TCH{(f;, 1)L, n)
The total cost of experiment,

TC(f;,1;)}",,n), consists of three parts:
1. The cost of conducting the experiment is

m
Cyxmax{f; *[;}+C, *> f, *1;, where
1<i<m i=1

C, denotes the operator's salary per unit of time

and Cp denotes the unit cost of power bill and
depreciation of the currency of testing equipment.

m
2. The cost of measurement is C, *n=*>I;,
i=1

where C,, denotes the wunit cost of
measurement.

3. The cost of tested devices is Cy * m*n, where

C, denotes the unit cost of device.

Thus, the total cost of experiment is
TC{(fi, 1)} n)
m
=C, *[ng.g,)s{f' *Ii}+cp *; fi*l,
m
+Cp*n* Y |, +Cy *m#n.

i=1

The optimization model:
Synthesizing the results above, the optimization
model can be expressed as follows:

Minimize
m
Coxmax{f *I}+C_ *> f*l +
1<i<m i1
m
Cp*n*) |;+Cyxm=n
i=1
Subject to
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r m-1
fl{m @1(x)*02+A+(wl_w2)b“1+pﬂ dx>P*

0
o o

- m-1
jl{cp Di(x) « T AT (@ _”1)b“1+p}} dx>1-¢"

0 [oF] O3

(18)
60'3,49i21"(1 + 2)
)
ﬂzth?‘
k=1
fl‘ II‘ n€N={1,2,3,}n22
i=1,2,.., m.
Although the optimization model seems
somewhat complicated, a close look at the

constraints reveals that {(f;,l;)}, can be

determined by Equations (11) and n* can be
determined by Equations (17) and (18) which are
really functions of n.

In the next section, we will use an example to
illustrate this procedure.

4. ANumerical Example

Suppose that a manufacturer wants to select the
most reliable design at a predetermined time
t,=20000 hours among four competing designs of

parts (denoted by {Hi}i4=1 ) whose quality
characteristics  satisfy ~ Equation  (3)  with
g(x)=Inx and ;' ~Weibull(9,,5) (.
—In B ~ Extreme(u;,b)). If the manufacturer

would like to conduct degradation experiments to

select the optimal design and would like to control

the quality of decision such that the probability of

correct selection achieves 0.90, then the following

questions may come to him:

1. How many devices (N) should be taken for each
design?

2. How to determine an appropriate inspection
frequency ( f;) for IT;?

3. How many times (l;) should the measurements

be made for II;? (In other words, what is the

most appropriate termination time (t”i ) for
I1;?)

To answer these questions, he needs the values
of {u;},, b, and o2. So a pilot study is
conducted as follows. For each competing design,
N, devices are randomly selected for performing a
degradation test under the condition that the
measurements are made every f, units of time

until time t, = fo *ly*t,.

Suppose, based on the data obtained from the
pilot study and the procedures in Section 3, that
(a1, 0,5,05,04)=(05,05,05,0.5) and

2
(Ug, Uy, Uz, Uy, b o))
= (5.1980, 5.0438, 4.8075, 4.6923, 0.120, 0.0020).
(19)

According to Equation (19), we can take
A =5.1980-5.0438=0.1542. Besides, set ¢ =0.10,

p =001, P* =090, t,=20000 hours, t, =24
hours, and

(Cs.C,.Cp.Cy)=(18.25,10.85, 1.25, 60).

Finally, if the lifetimes of these designs are
technically defined as the time when their quality
characteristics degrade below a critical level

D =50%, then the optimal test plan can be obtained
as follows:

(f ) fa, T 00 05,05,1,,n%)
=(2, 2,3, 3, 101, 87, 56, 49, 25).

That is, there are 25 devices on test for each design.
And, the inspection for IT;, II,, II;, and II,

to '[1 \* =2*101*24=4848,
W

t =2*87*24=4176, t3|* =3*56*24=4032, and

2,15 3

t Al =3%49*24=3528 hours at 48, 48, 72, and 72
g

hour intervals, respectively.
The total cost is TC({(f;",1; )}y, n") = 26340.1

dollars.

Thus, by using the selecting rule SR, we have at
least 90% confidence in selecting the most reliable
design correctly, if the true configuration of

will be taken up

(Uy,U,,Ug, Uy, b, 02) is as shown above.



5. Conclusion

This paper proposed an approach to the optimal
design problem of selecting the most reliable design
with a reciprocal Weibull degradation rate. First, an
intuitively appealing selection rule is proposed. Then
the optimal combination of the sample size,
inspection frequency, and the termination time for
each of competing products is derived by
minimizing the total experimental cost, subject to
the constraints of a minimum probability of correct
selection and a maximum probability of incorrect
selection of the proposed selection rule.

For some very-highly-reliable products, the
degradation may be so slow that it is impossible to
have a precise estimation within a reasonable
amount of testing time. In such cases, an alternative
is to use higher stresses to extrapolate the products'
reliability at a design stress. This is called an
accelerated degradation test (ADT). Many excellent
references can be found in Nelson (1990),
Bagdonavicius & Nikulin (2002), and Meeker &
Escobar (1993) on this subject. It is no doubt
interesting to explore the selection problems with
ADT data.
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Table 1. Percentage points for Zui with 15<n <45

Percent

n 0.005 0.025 0.05 0.95 0.975 0.995

15 | -0.8369349 | -0.6132709 | -0.5051136 | 0.4999568 | 0.6149584 | 0.8647800
16 | -0.8063064 | -0.5696472 | -0.4676821 | 0.4857601 | 0.5996278 | 0.8321308
17 | -0.7716773 | -0.5652294 | -0.4626510 | 0.4681919 | 0.5810484 | 0.7919772
18 | -0.7593111 | -0.5446783 | -0.4408019 | 0.4496273 | 0.5431534 | 0.7716725
19 | -0.7200131 | -0.5221917 | -0.4349377 | 0.4389673 | 0.5317767 | 0.7608980
20 | -0.6992567 | -0.5124626 | -0.4247361 | 0.4267159 | 0.5185241 | 0.7403819
21 | -0.6746095 | -0.5000683 | -0.4108292 | 0.4150886 | 0.5036729 | 0.6956545
22 | -0.6461502 | -0.4746067 | -0.3963549 | 0.3935923 | 0.4786128 | 0.6742980
23 | -0.6346446 | -0.4685362 | -0.3888307 | 0.3922332 | 0.4746973 | 0.6424078
24 | -0.6090699 | -0.4470427 | -0.3737693 | 0.3876159 | 0.4714896 | 0.6303872
25 | -0.5969210 | -0.4403808 | -0.3640087 | 0.3738185 | 0.4486703 | 0.6117672
26 | -0.5948354 | -0.4333082 | -0.3568962 | 0.3673695 | 0.4476189 | 0.6044995
27 | -0.5664993 | -0.4242786 | -0.3523856 | 0.3612035 | 0.4326448 | 0.5724763
28 | -0.5519401 | -0.4117771 | -0.3414448 | 0.3553037 | 0.4225960 | 0.5677018
29 | -0.5459925 | -0.4059678 | -0.3370607 | 0.3504840 | 0.4174685 | 0.5520698
30 | -0.5387873 | -0.3969189 | -0.3328127 | 0.3427461 | 0.4111536 | 0.5479877
31 | -0.5225392 | -0.3913640 | -0.3273462 | 0.3302183 | 0.3997060 | 0.5420760
32 | -0.5032165 | -0.3816363 | -0.3184235 | 0.3286855 | 0.3973704 | 0.5340919
33 | -0.5028472 | -0.3750924 | -0.3135198 | 0.3217955 | 0.3883973 | 0.5140329
34 | -0.4960804 | -0.3708996 | -0.3096764 | 0.3144957 | 0.3827077 | 0.5090763
35 | -0.4950426 | -0.3677209 | -0.3090020 | 0.3089990 | 0.3780428 | 0.5074862
36 | -0.4303312 | -0.3624304 | -0.3013255 | 0.3086409 | 0.3739596 | 0.5034182
37 | -0.4745468 | -0.3538984 | -0.2961882 | 0.3042587 | 0.3675779 | 0.4948321
38 | -0.4681570 | -0.3509527 | -0.2928190 | 0.2991383 | 0.3574701 | 0.4882042
39 | -0.4619455 | -0.3448189 | -0.2870099 | 0.2909621 | 0.3519658 | 0.4831272
40 | -0.4470719 | -0.3378060 | -0.2829040 | 0.2855017 | 0.3439096 | 0.4807485
41 | -0.4462656 | -0.3317441 | -0.2786154 | 0.2827952 | 0.3383323 | 0.4641474
42 | -0.4371849 | -0.3287158 | -0.2760627 | 0.2788424 | 0.3339745 | 0.4473633
43 | -0.4296181 | -0.3228238 | -0.2670903 | 0.2763385 | 0.3303542 | 0.4457682
44 | -0.4255031 | -0.3191413 | -0.2669574 | 0.2738197 | 0.3293325 | 0.4425773
45 | -0.4164150 | -0.3158671 | -0.2653876 | 0.2702089 | 0.3257615 | 0.4380333
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